研究方向 Lagrange力学 Hamilton力学 非完整力学 Birkhoff力学 力学的变分原理 分数阶动力学 时间尺度动力学 科研项目 · 国家自然科学基金面上项目(批准号:12272248),2023.01-2026.12,主持 · 国家自然科学基金面上项目(批准号:11972241),2020.01-2023.12,主持 · 国家自然科学基金面上项目(批准号:11572212),2016.01-2019.12,主持 · 国家自然科学基金面上项目(批准号:11272227),2013.01-2016.12,主持 · 国家自然科学基金面上项目(批准号:10972151),2010.01-2012.12,主持 · 江苏省自然科学基金面上项目(批准号:BK20191454),2019.07-2022.06,主持 · 建设部科技计划项目(项目编号:2008-K3-11),2008.09-2010.08,主持 代表性论著 以第一作者或通讯作者发表论文350余篇,其中SCI收录150余篇,EI收录100余篇。代表性论文主要有: [1] Yi Zhang*. Nonshifted dynamics of constrained systems on time scales under Lagrange framework and its Noether’s theorem. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106214. [2] 张毅*. 时间尺度上非迁移Birkhoff系统的Mei对称性定理. 物理学报, 2021, 70(24): 244501. [3] 田雪, 张毅*. Caputo△型分数阶时间尺度Noether定理. 力学学报, 2021, 53(7): 2010-2022. [4] Yi Zhang*. Mei’s symmetry theorem for time scale nonshifted mechanical systems. Theoretical and Applied Mechanics Letters, 2021, 11(5): 100286. [5] 张毅*. 时间尺度上Lagrange系统的Hojman守恒量. 力学学报, 2021, 53(10): 2814-2822. [6] Xue Tian, Yi Zhang*. Fractional time-scales Noether theorem with Caputo △ derivatives for Hamiltonian systems. Applied Mathematics and Computation, 2021, 393: 125753 [7] Yi Zhang*. Adiabatic invariants and Lie symmetries on time scales for nonholonomic systems of non-Chetaev type. Acta Mechanica, 2020, 231(1): 293-303. [8] 张毅*. 弱非线性动力学方程的Noether准对称性与近似Noether守恒量. 力学学报, 2020, 52(6): 1765-1773. [9] 徐鑫鑫, 张毅*.分数阶非保守Lagrange系统的一类新型绝热不变量. 物理学报, 2020, 69(22): 220401. [10] Lin-Jie Zhang, Yi Zhang*. Non-standard Birkhoffian dynamics and its Noether's theorems. Communications in Nonlinear Science and Numerical Simulation, 2020, 91: 105435. [11] Xin-Xin Xu, Yi Zhang*. Adiabatic invariants for disturbed fractional Hamiltonian system in terms of Herglotz differential variational principle. Acta Mechanica, 2020, 231(12): 4881-4890. [12] Ying Zhou, Yi Zhang*. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mechanica, 2020, 231(7): 3017-3029. [13] Сюэ Тянь, И Чжан*. Адиабатические инварианты типа Герглотца для возмущенных неконсервативных Лагранжевых систем. Теоретическая И Математическая Физика, 2020, 202(1): 143-154 [14] Juan-Juan Ding, Yi Zhang*. Noether's theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos, Solitions and Fractals, 2020, 138: 109913. [15] Jing Song, Yi Zhang*. Routh method of reduction for dynamical systems with nonstandard Lagrangians on time scales. Indian Journal of Physics, 2020, 94(4): 501-506. [16] Yi Zhang*, Xiang-Hua Zhai. Perturbation to Lie symmetry and adiabatic invariants for BirkhoffIan systems on time scales. Communications in Nonlinear Science and Numerical Simulation, 2019, 75: 251-261. [17] Yi Zhang*, Xue Tian. Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems. Physics Letters A, 2019, 383: 691-696. [18] Yi Zhang*. Lie symmetry and invariants for a generalized Birkhoffian system on time scales. Chaos, Solitons and Fractals, 2019, 128: 306-312. [19] Yi Zhang*. Generalized canonical transformation for second-order BirkhoffIan systems on time scales. Theoretical & Applied Mechanics Letters, 2019, 9: 353-357. [20] Xiang-Hua Zhai, Yi Zhang*. Lie symmetry analysis on time scales and its application on mechanical systems. Journal of Vibration and Control, 2019, 25(3): 581-592. [21] Xue Tian, Yi Zhang*. Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos, Solitions and Fractals, 2019, 119: 50-54. [22] Xiang-Hua Zhai, Yi Zhang*. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Physica Polonica A, 2019, 136(3): 439-443. [23] Xue Tian, Yi Zhang*. Time-scales Herglotz type Noether theorem for delta derivatives of Birkhoffian systems. Royal Society Open Science, 2019, 6 (11): 191248. [24] Yi Zhang*, Xue-Ping Wang. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. International Journal of Non-Linear Mechanics, 2018, 105: 165-172. [25] Yi Zhang*. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. International Journal of Non-Linear Mechanics, 2018, 101: 36-43. [26] Chuan-Jing Song, Yi Zhang*. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fractional Calculus & Applied Analysis, 2018, 21(2): 509-526. [27] Xue Tian, Yi Zhang*. Noether’s theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem. International Journal of Theoretical Physics, 2018, 57(3): 887-897. [28] Xue Tian, Yi Zhang*. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mechanica, 2018, 229(9): 3601-3611. [29] Yi Zhang*. Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem. Acta Mechanica, 2017, 228(4): 1481-1492. [30] Xiang-Hua Zhai, Yi Zhang*. Noether theorem for non-conservative systems with time delay on time scales. Communications in Nonlinear Science and Numerical Simulation, 2017, 52: 32-43. [31] Chuan-Jing Song, Yi Zhang*. Conserved quantities for Hamiltonian systems on time scales. Applied Mathematics and Computation, 2017, 313: 24-36. [32] Chuan-Jing Song, Yi Zhang*. Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. International Journal of Non-Linear Mechanics, 2017, 90: 32-38. [33] Chuan-Jing Song, Yi Zhang*. Noether theory for BirkhoffIan systems with nabla derivatives. Journal of Nonlinear Science and Applications, 2017, 10(4): 2268-2282. [34] Yi Zhang*, Xiao-San Zhou. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dynamics, 2016, 84(4): 1867-1876. [35] 张毅*. 相空间中非保守系统Herglotz广义变分原理及其Noether定理. 力学学报, 2016, 48(6): 1382-1389. [36] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 81-97. [37] Bin Yan, Yi Zhang*. Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mechanica, 2016, 227(9): 2439-2449. [38] 张毅*. 分数阶力学系统的正则变换理论. 应用数学学报, 2016, 39(2): 249-260. [39] Yi Zhang*, Xiang-Hua Zhai. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2): 469-480. [40] Chuan-Jing Song, Yi Zhang*. Noether theorem for Birkhoffian systems on time scales. Journal of Mathematical Physics, 2015, 56(10): 102701. [41] Shi-Xin Jin, Yi Zhang*. Noether theorem for non-conservative Lagrange systems with time delay based on fractional model. Nonlinear Dynamics, 2015, 79(2): 1169-1183. [42] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics, 2014, 77(1-2): 73-86. [43] Zi-Xuan Long, Yi Zhang*. Fractional Noether theorem based on extended exponentially fractional integral. International Journal of Theoretical Physics, 2014, 53(3): 841-855. [44] Ju Chen, Yi Zhang*. Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian systems based on El-Nabulsi nonconservative dynamics model. Nonlinear Dynamics, 2014, 77(1-2): 353-360. [45] Yi Zhang*, Yan Zhou. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dynamics, 2013, 73(1-2): 783-793. [46] 张毅*. 非保守动力学系统Noether对称性的摄动与绝热不变量. 物理学报, 2013, 62(16): 164501. [47] 张毅*, 金世欣. 含时滞的非保守系统动力学的Noether理论. 物理学报, 2013, 62(23): 234502. [48] Yi Zhang*. Fractional differential equations of motion in terms of combined Riemann- Liouville derivatives. Chinese Physics B, 2012, 21(8): 084502. [49] Yi Zhang*. The method of variation of parameters for integration of a generalized Birkhoffian system. Acta Mechanica Sinica, 2011, 27(6): 1059–1064 [50] Yi Zhang*. The method of Jacobi Last Multiplier for integrating nonholonomic systems. Acta Physica Polonica A, 2011, 120(3): 443-446. [51] 张毅*. 非完整力学系统的Hamilton对称性. 中国科学: 物理学 力学 天文学, 2010, 40(9): 1130-1137. [52] Yi Zhang*. Stability of manifold of equilibrium states for nonholonomic systems in relative motion. Chinese Physics Letters, 2009, 26 (12): 120305 [53] Yi Zhang*. Hojman conserved quantities for Birkhoffian systems in the event space. Communications in Theoretical Physics, 2008, 50(1): 59-62. [54] Yi Zhang*, Feng-Xiang Mei. A geometric framework for time-dependent mechanical systems with unilateral constraints. Chinese Physics, 2006, 15(1): 13-18 [55] Yi Zhang*. Conservation laws for mechanical systems with unilateral holonomic constraints. Progress in Natural Science, 2004, 14(1): 55-59. [56] 张毅*. Birkhoff系统的Hojman定理的几何基础. 物理学报, 2004, 53(12): 4026-4028. [57] 张毅*. Birkhoff系统的一类Lie对称性守恒量. 物理学报, 2002, 51(3): 461-464. [58] Yi Zhang*, Feng-Xiang Mei. A differential geometric description for time-independent Chetaev’s non-holonomic mechanical system with unilateral constraints. Acta Mechanica Solida Sinica, 2002, 15(1): 62-67. [59] Yi Zhang*, Mei Shang, Feng-Xiang Mei. Symmetries and conserved quantities for systems of generalized classical mechanics. Chinese Physics, 2000, 9(6): 401-407. [60] Yi Zhang*, Feng-Xiang Mei. Lie symmetries of mechanical systems with unilateral holonomic constraints. Chinese Science Bulletin, 2000, 45(15): 1354-1358. |